
4/10/2021 System Calls

https://cs.lmu.edu/~ray/notes/syscalls/ 1/3

System Calls
The interface between an application program and the Operating System is through
system calls.

CONTENTSCONTENTS

What is a system call? • System Calls in 32-bit Linux • System Calls in 64-bit Linux • Lists of Linux System Calls

• macOS System Calls • Windows System Calls

What is a system call?
The operating system is responsible for

Process Management (starting, running, stopping processes)
File Management(creating, opening, closing, reading, writing, renaming �les)
Memory Management (allocating, deallocating memory)
Other stuff (timing, scheduling, network management)

An application program makes a system call to get the operating system to perform a
service for it, like reading from a �le.

One nice thing about syscalls is that you don't have to link with a C library, so your
executables can be much smaller.

System Calls in 32-bit Linux

4/10/2021 System Calls

https://cs.lmu.edu/~ray/notes/syscalls/ 2/3

To make a system call in 32-bit Linux, place the system call number in eax , then its
arguments, in order, in ebx , ecx , edx , esi , edi , and ebp , then invoke int 0x80 .
Some system calls return information, usually in eax .
All registers are saved across the system call.

System Calls in 64-bit Linux
hello.s

To make a system call in 64-bit Linux, place the system call number in rax , then its
arguments, in order, in rdi , rsi , rdx , r10 , r8 , and r9 , then invoke syscall .
Some system calls return information, usually in rax . A value in the range between
-4095 and -1 indicates an error, it is -errno.
The system call destroys rcx and r11 but others registers are saved across the system
call.
Full details are in Section A.2.1 of the The AMD64 ABI.

--
Writes "Hello, World" to the console using only system calls. Runs on 64-bit Linux only.
To assemble and run:

gcc -c hello.s && ld hello.o && ./a.out

or

gcc -nostdlib hello.s && ./a.out
--

 .global _start

 .text
_start:
 # write(1, message, 13)
 mov $1, %rax # system call 1 is write
 mov $1, %rdi # file handle 1 is stdout
 mov $message, %rsi # address of string to output
 mov $13, %rdx # number of bytes
 syscall # invoke operating system to do the write

 # exit(0)
 mov $60, %rax # system call 60 is exit
 xor %rdi, %rdi # we want return code 0
 syscall # invoke operating system to exit
message:
 .ascii "Hello, world\n"

http://www.x86-64.org/documentation/abi.pdf

4/10/2021 System Calls

https://cs.lmu.edu/~ray/notes/syscalls/ 3/3

Lists of Linux System Calls
There are hundreds of system calls in Linux. A good online source for 32-bit Linux is
http://syscalls.kernelgrok.com/ . For 64-bit Linux, check out
http://www.acsu.buffalo.edu/~charngda/linux_syscalls_64bit.html

Check those pages, and of course, the Linux source.

macOS System Calls

Windows System Calls

http://syscalls.kernelgrok.com/
http://blog.rchapman.org/post/36801038863/linux-system-call-table-for-x86-64

